Thinking Dynamically

A (discrete-time) dynamical system is a function from a set X to ifself $f:X \rightarrow X$ 1 Same space function space (thing that come out) (things that get pluggel m)

Day 1

Example: X = all real numbers are the number

line axa TR

 $f: \mathbb{R} \to \mathbb{R}$ is $f(x) = \frac{1}{2}x$

Orbits: the evolution of the system, for the point X. = 6 is

 $X_0 = 6$, $X_1 = f(X_0) = \frac{1}{2}(6) = 3$, $X_2 = f(X_1) = \frac{1}{2}(3) = \frac{2}{2}$

 $X_4 = f(X_3) = \frac{1}{2}(\frac{3}{2}) = \frac{3}{4}$

These orb.ts are related to the geometric sequence

Notation: $f^{K}(x) = K^{**} - step in the orbitor <math>\mathcal{K}$.

Warning: $f^{k}cx$ $\neq (f(x))^{k}$

The (forward) orbit of a point x is the set O(x) = {x, f(x), f²(x), ...}

in this case $f^3 = id$ - identity transportion

Definition A point P is called periodic if f'(p) = p for some positive integer N

The smallest such integer is called the period.

Example for $f(x) = \frac{1}{2}x$ has only one periodic point, x = 0.

Definition a point x is pre-periodic if there are two integers m = n with

$$f(x) = f'(x)$$

Example X = Unit Circle=2 (x,y) ER2; x2+y2=13

f: X-JX is the counter-clockwise rotation of x at angle O.

Also called circle rotation with angle D.

Also came f(x)If $\theta = \pi$, then (1, 1) (1, 1) (1, 2)

Example X = The space of finite subsets of rational numbers

pex turn p can be p= { 1/2, 2, 2, 4} f is defined by (for example): $f\left(2\frac{1}{3}, \frac{2}{5}, \frac{4}{5}\right) = \left\{\frac{1}{3}, \frac{1+2}{3+5}, \frac{2}{5}, \frac{2+4}{5+7}, \frac{4}{5}\right\}$ $= \frac{2}{3}, \frac{3}{8}, \frac{2}{5}, \frac{1}{2}, \frac{4}{3}$ in put: is a finite set

in increasing order

output: the initial set and

the medians of two

Consecutive mitral elevents.

Some interesting thoughts: · Start with any pair Za, bz. Do you eventually see all rational numbers between a and b?

- . what happens do the gaps between succesive elements?
- · What is the danoninator size? How quickly defley grow !

Periods & Periodic Points

time

Recall p is periodic for f:x-x if

Day z

f(P) = P for some K The minimal & posifive such K is colled the Period of P.

Consider a periodic point p. Let A(p) denote the set of times such f (p)=p that

rea(p) if and only if

observations . A(1) is a get of natural

numbers

· The smallest time is the period σf P.

<u>Claim</u>: $A(P) = \{n, 2n, 3n, 4n, ... \}$ where n is the period of P we nant to prove the doin using set theory: Subsets Two sets A,B. ACB if every element of A belongs to B Also, A=B if ACB & BCA. Showing: 3n, 2n, 3n, ... 3 C A(P) Since n is is the smallest element of A(P) $f''(\rho) = \rho$ Now, for every K, f''(P) = f(f(...(f(P))...))Kn times f $= \int^{n} \left(f^{n} (\cdots f^{n} (p) \cdots) \right)$ $= f^{n}(f^{n}(\dots(P)\dots)) \qquad \text{Since } f^{n}(P) = P$ K-1 times fr K fing: = P

Showing: $A(p) \subset \{n, 2n, ...\}$ we will use a technique called contradiction Suppose that there exists mEA(P) which is not in Znizni. This means that mis not divisible by n Let l = L m] (L.) is the floor.) and g=m-ln for example [3.5]=3 <u>Exercise</u> 0 < m-ln=q<n [7]=7, [8.2]=8 Continuing with the pro-f, $f^{q}(p) = f^{q}(f^{(n)}(p)) = f^{q+e}(p) = f^{m-e+e}(p) = f(p) = f(p) = f(p) = f(p)$ So f^q(P) = p for some number Smaller than n, i.e. q. Since o < q < n, this contradicts Smallest element of A(p). n being the And 50, we must have ACP) CZn,2n,... ?

Notation

R/2πZ

denotes the set of equivalence classes